KS3 / KS4 Biology: Size and heat

Video summary

Professor Brian Cox explores the relationship between an organism's body size and its metabolic rate.

He explains that smaller animals have a larger surface to volume ratio compared to larger animals. This means they lose heat at a much quicker rate.

To combat this, smaller animals are forced to maintain a high metabolic rate, to keep a constant body temperature; their heart beats at a faster pace and they breathe much quicker, as such smaller animals do not tend to live as long.

This clip is from the series Wonders of Life.

Back to top

Teacher Notes

This clip could be used to consider how the size of an animal determines its metabolic rate, which in turn determines its life span. This could be determined by providing data on animals so their surface area to volume ratio can be calculated and a correlation either determined or predicted based upon its life span.

This clip will be relevant for teaching Biology at KS3 and KS4/GCSE in England, Wales and Northern Ireland and SQA National 3/4/5 in Scotland.

Back to top

Bacteria and the development of an oxygen rich atmosphere. video

Professor Brian Cox explains how the Earth developed an oxygen rich atmosphere due to organisms called Cyanobacteria.

Bacteria and the development of an oxygen rich atmosphere

Conservation of energy. video

Professor Brian Cox explains the first law of thermodynamics. He describes how energy is always conserved, never created or destroyed.

Conservation of energy

How has life on Earth become so varied? video

Professor Brian Cox explores how life on Earth is so varied, despite us all being descended from one organism, known as LUCA. He examines how cosmic rays drive the mutations that create evolution.

How has life on Earth become so varied?

Lemurs: Evolution and adaptation. video

Professor Brian Cox visits Madagascar to track down the rare aye-aye lemur, and see how it is perfectly adapted to suit its surroundings.

Lemurs: Evolution and adaptation

Jellyfish and photosynthesis. video

Professor Brian Cox sees photosynthesis in action, investigating a unique type of jellyfish that have evolved to carry algae within their bodies and feed off the glucose the plants create.

Jellyfish and photosynthesis

The arrival of water on Earth. video

Professor Brian Cox describes the similarities between isotopes of water on comets and our planet and suggests that the water in the oceans may have come from asteroids.

The arrival of water on Earth

The origins of life on Earth. video

Professor Brian Cox explains that in hydrothermal vents on the ocean floor, energy is released in the presence of organic molecules.

The origins of life on Earth

Evolution of hearing. video

Professor Brian Cox explains the evolution of the mammalian ear bones, the malleus, incus and stapes by using a flicker-book to show how the gill arches of jawless fish altered in size and function.

Evolution of hearing

Evolution of sight. video

Professor Brian Cox shows the stages of the evolution of the eye, from a primitive light sensitive spot, to a complex mammalian eye.

Evolution of sight

Evolution of the senses. video

Professor Brian Cox compares the way that protists sense and react to their environment with the action potentials found in the nerves of more complex life.

Evolution of the senses

Gravity, size and mass. video

An explanation of how forces including gravity affect organisms. Professor Brian Cox explains that as size doubles, mass increases by a factor of eight.

Gravity, size and mass
Back to top