Lorg caisead, co-aontaran, trasnaidhean loidhneachan-meadhain, loidhneachan àirde is letheadairean ceart-cheàrnach a' cleachdadh eòlas air a' phuing-meadhain is loidhneachan co-shìnte/ceart-cheàrnach.
Part ofMatamataigCleachdadh
Seall gu bheil na loidhneachan leis na co-aontaran \(4x + 2y - 8 = 0\) agus \(2y = x + 1\) ceart-cheàrnach.
An toiseach ath-rèitich gach co-aontar dhan riochd \(y = mx + c\).
\(2y = x + 1\)
\(y = \frac{1}{2}x + \frac{1}{2}\)
Lorg a' chiad caisead:
\(caisead = \frac{1}{2}\)
\(4x + 2y - 8 = 0\)
\(2y = - 4x + 8\)
\(y = \frac{{ - 4}}{2}x + \frac{8}{2}\)
\(y = - 2x + 4\)
Lorg an dara caisead:
\(caisead = - 2\)
Cuir crìoch air an dearbhadh:
\({m_1} \times {m_2} = \frac{1}{2} \times ( - 2) = - 1\)
Mar sin tha na loidhneachan ceart-cheàrnach.