Lorg caisead, co-aontaran, trasnaidhean loidhneachan-meadhain, loidhneachan àirde is letheadairean ceart-cheàrnach a' cleachdadh eòlas air a' phuing-meadhain is loidhneachan co-shìnte/ceart-cheàrnach.
Part ofMatamataigCleachdadh
Tha an co-aontar coitcheann a' nochdadh mar \(Ax + By + C = 0\).
Ach airson co-aontar a chruthachadh, cleachd \(y - b = m(x - a)\) far an e \(m\) an caisead agus far an e puing air an loidhne a th' ann an \((a,b)\).
Obraich a-mach co-aontar na loidhne le caisead 3, a' dol tro \((4,1)\).
A' cleachdadh \(y - b = m(x - a)\) le \(m = 3\) agus \((a,b) = (4,1)\), gheibh sinn:
\(y - 1 = 3(x - 4)\)
\(y - 1 = 3x - 12\)
\(y = 3x - 11\)
\(3x-y-11=0\)
Gus feartan aithneachadh dèan coimeas ris an riochd \(y = mx + c\) far an e \(m\) an caisead agus \((0,c)\) an trasnadh-y.
Obraich a-mach caisead na loidhne leis a' cho-aontar \(2x + 5y - 6 = 0\)
Ath-rèitich seo dhan riochd \(y = mx + c\) gus am faigh thu:
\(2x + 5y - 6 = 0\)
\(5y = - 2x + 6\)
\(y = - \frac{2}{5}x + \frac{6}{5}\)
\(caisead = - \frac{2}{5}\)