An loidhne dhìreachCo-aontar loidhne dhìreach

Lorg caisead, co-aontaran, trasnaidhean loidhneachan-meadhain, loidhneachan àirde is letheadairean ceart-cheàrnach a' cleachdadh eòlas air a' phuing-meadhain is loidhneachan co-shìnte/ceart-cheàrnach.

Part ofMatamataigCleachdadh

Co-aontar loidhne dhìreach

Tha an co-aontar coitcheann a' nochdadh mar \(Ax + By + C = 0\).

Ach airson co-aontar a chruthachadh, cleachd \(y - b = m(x - a)\) far an e \(m\) an caisead agus far an e puing air an loidhne a th' ann an \((a,b)\).

Eisimpleir 1

Obraich a-mach co-aontar na loidhne le caisead 3, a' dol tro \((4,1)\).

Fuasgladh

A' cleachdadh \(y - b = m(x - a)\) le \(m = 3\) agus \((a,b) = (4,1)\), gheibh sinn:

\(y - 1 = 3(x - 4)\)

\(y - 1 = 3x - 12\)

\(y = 3x - 11\)

\(3x-y-11=0\)

Gus feartan aithneachadh dèan coimeas ris an riochd \(y = mx + c\) far an e \(m\) an caisead agus \((0,c)\) an trasnadh-y.

Eisimpleir 2

Obraich a-mach caisead na loidhne leis a' cho-aontar \(2x + 5y - 6 = 0\)

Fuasgladh

Ath-rèitich seo dhan riochd \(y = mx + c\) gus am faigh thu:

\(2x + 5y - 6 = 0\)

\(5y = - 2x + 6\)

\(y = - \frac{2}{5}x + \frac{6}{5}\)

\(caisead = - \frac{2}{5}\)