Loidhneachan co-shìnte
Tha na co-aontaran \(y = {m_1}x + 3\) agus \(y = {m_2}x - 7\) aig dà loidhne.
Ma tha na loidhneachan co-shìnte, bidh \({m_1} = {m_2}\) agus ma tha \({m_1} = {m_2}\) tha na loidhneachan co-shìnte.
Eisimpleir
Seall gu bheil na loidhneachan leis na co-aontaran \(2y = x + 1\) agus \(3x - 6y - 8 = 0\) co-shìnte.
Fuasgladh
An toiseach ath-rèitich gach co-aontar dhan riochd \(y = mx + c\).
\(2y = x + 1\)
\(y = \frac{1}{2}x + \frac{1}{2}\)
Lorg a' chiad caisead:
\(caisead = \frac{1}{2}\)
\(3x - 6y - 8 = 0\)
\(- 6y = - 3x + 8\)
\(y = \frac{{ - 3x}}{{ - 6}} + \frac{8}{{ - 6}}\)
\(y = \frac{1}{2}x - \frac{4}{3}\)
Lorg an dara caisead:
\(caisead = \frac{1}{2}\)
Cuir crìoch air an dearbhadh:
Tha na caiseadan co-ionann, agus mar sin tha na loidhneachan co-shìnte.
Co-aontaran loidhneachan le caisead do-mhìnichte
Chan urrainn dhuinn caisead loidhne a tha co-shìnte ris a' \(y\)-axis obrachadh a-mach bho na formlean gu h-àrd. Dìreach sgrìobh an co-aontar!
Loidhneachan co-shìnte ris a' y-axis
San aon dòigh, faodar cuideachd co-aontaran loidhneachan a tha co-shìnte ris an \(x\)-axis a sgrìobhadh.