An loidhne dhìreachLoidhneachan co-shìnte

Lorg caisead, co-aontaran, trasnaidhean loidhneachan-meadhain, loidhneachan àirde is letheadairean ceart-cheàrnach a' cleachdadh eòlas air a' phuing-meadhain is loidhneachan co-shìnte/ceart-cheàrnach.

Part ofMatamataigCleachdadh

Loidhneachan co-shìnte

Tha na co-aontaran \(y = {m_1}x + 3\) agus \(y = {m_2}x - 7\) aig dà loidhne.

Ma tha na loidhneachan co-shìnte, bidh \({m_1} = {m_2}\) agus ma tha \({m_1} = {m_2}\) tha na loidhneachan co-shìnte.

Eisimpleir

Seall gu bheil na loidhneachan leis na co-aontaran \(2y = x + 1\) agus \(3x - 6y - 8 = 0\) co-shìnte.

Fuasgladh

An toiseach ath-rèitich gach co-aontar dhan riochd \(y = mx + c\).

\(2y = x + 1\)

\(y = \frac{1}{2}x + \frac{1}{2}\)

Lorg a' chiad caisead:

\(caisead = \frac{1}{2}\)

\(3x - 6y - 8 = 0\)

\(- 6y = - 3x + 8\)

\(y = \frac{{ - 3x}}{{ - 6}} + \frac{8}{{ - 6}}\)

\(y = \frac{1}{2}x - \frac{4}{3}\)

Lorg an dara caisead:

\(caisead = \frac{1}{2}\)

Cuir crìoch air an dearbhadh:

Tha na caiseadan co-ionann, agus mar sin tha na loidhneachan co-shìnte.

Co-aontaran loidhneachan le caisead do-mhìnichte

Chan urrainn dhuinn caisead loidhne a tha co-shìnte ris a' \(y\)-axis obrachadh a-mach bho na formlean gu h-àrd. Dìreach sgrìobh an co-aontar!

Loidhneachan co-shìnte ris a' y-axis

x=-3, x=1 and x=4 are lines parallel to the y-axis

San aon dòigh, faodar cuideachd co-aontaran loidhneachan a tha co-shìnte ris an \(x\)-axis a sgrìobhadh.

Loidhneachan co-shìnte ris an x-axis

y=4, y=1 and y=-2 are lines parallel to the x-axis