Trasnadh dà loidhne dhìrich
Bidh puing chumanta aig dà loidhne nach eil co-shìnte. Canaidh sinn a' phuing-trasnaidh ris a' phuing far a bheil dà loidhne a' dol thairis air a chèile no a' coinneachadh.
Eismpleir
Lorg a' phuing-trasnaidh aig na loidhneachan \(2x + y - 8 = 0\) agus \(4x - 3y = 6\)
Fuasgladh
An toiseach ath-rèitich na loidhneachan don riochd \(y = mx + c\)
\(2x + y - 8 = 0\)
\(y = - 2x + 8\)
Agus:
\(4x - 3y = 6\)
\(3y = 4x - 6\)
Mar a chì thu gu h-àrd, chan eil an aon cho-èifeachd-y aig na co-aontaran. Mar sin bidh sinn ag iomadachadh a' chiad cho-aontair le 3:
\(3y = - 6x + 24\)
\(3y = 4x - 6\)
Bidh sinn a-nis a' dèanamh taobh deas an dà cho-aontair co-ionann ri chèile agus gam fuasgladh gus an lorg sinn luach \(x\).
\(- 6x + 24 = 4x - 6\)
\(- 6x - 4x = - 6 - 24\)
\(- 10x = - 30\)
\(x = 3\)
Bidh sinn a-nis ag ionadachadh an luach seo a-steach do aon de na co-aontaran tùsail gus luach \(y\) obrachadh a-mach.
\(y = - 2x + 8\)
\(y = - 2 \times 3 + 8\)
\(y = - 6 + 8\)
\(y = 2\)
Mar sin 's e a' phuing-trasnaidh \((3,2)\).