ÒrdughanDàimhean tilleachais loidhneach

Dàimh tillteachais: òrdugh a bheir dhut ceangal eadar dà theirm leantainneach. Faodar an ceangal a chleachdadh gus an ath teirm/an teirm roimhe, co-èifeachdairean a tha a dhìth is a' chrìoch a lorg.

Part ofMatamataigCleachdadh

Dàimhean tilleachais loidhneach

Cuimhnich gur e òrdugh a bheir dhut ceangal eadar dà theirm leantainneach a th' ann an dàimh tillteachais. 'S àbhaist gur e \({U_{n + 1}}\) agus \({U_n}\) a bhios sna teirmean sin. Ach dh'fhaodadh iad nochdadh mar \({U_n}\) agus \({U_{n - 1}}\)

Eisimpleir

Tha òrdugh air a thoirt dhuinn leis an dàimh tillteachais \({U_{n + 1}} = 3{U_n} + 9\).

Ma tha \({U_0} = - 4\) obraich a-mach a' chiad \(5\) teirmean.

Ma tha \({U_{n + 1}} = 3{U_n} + 9\) agad, obraichidh tu a-mach na leanas:

Ceum 1:

Nuair a tha \(n = 0\), \({U_0} = - 4\)

\({U_{0 + 1}} = 3{U_0} + 9\)

\(\Rightarrow {U_1} = 3( - 4) + 9 = - 3\)

\(\Rightarrow {U_1} = - 3\)

Ceum 2:

Nuair a tha \(n = 1\), \({U_1} = - 3\)

\({U_{1 + 1}} = 3{U_1} + 9\)

\(\Rightarrow {U_2} = 3( - 3) + 9 = 0\)

\(\Rightarrow {U_2} = 0\)

Ceum 3:

Nuair a tha \(n = 2\), \({U_2} = 0\)

\({U_{2 + 1}} = 3{U_2} + 9\)

\(\Rightarrow {U_3} = 3(0) + 9 = 9\)

\(\Rightarrow {U_3} = 9\)

Ceum 4:

Nuair a tha \(n = 3\), \({U_3} = 9\)

\({U_{3 + 1}} = 3{U_3} + 9\)

\(\Rightarrow {U_4} = 3(9) + 9 = 36\)

\(\Rightarrow {U_4} = 36\)

Mar sin 's e a' ciad 5 teirmean \(- 4, - 3,0,9,36\)