An cearcallAn tansaint

Obrachaidh tu a-mach co-aontar cearcaill nuair a tha fios agad air an radius is air a' mheadhan. Seallaidh an discriminant nàdar trasnaidhean eadar dà chearcall no eadar loidhne is cearcall.

Part ofMatamataigCleachdadh

An tansaint

Bhon as e loidhne dhìreach a th' ann an tansaint, tha an co-aontar air a shealltainn san riochd \(y - b = m(x - a)\). Feumaidh tu puing agus an caisead gus an co-aontar obrachadh a-mach.

Mar as trice, bidh a' phuing air a toirt dhut – far a bheil an tansaint a' coinneachadh ris a' chearcall.

Gus an caisead obrachadh a-mach, cuimhnich gu bheil an tansaint ceart-cheàrnach ris an radius bhon phuing aig a bheil e a' coinneachadh ris a' chearcall.

Obraich a-mach caisead an radius (CP) aig a' phuing far a bheil an tansaint a' coinneachadh a' chearcaill. An uair sin cleachd an co-aontar \({m_{CP}} \times {m_{tgt}} = - 1\) agus obraich a-mach caisead an tansaint.

Circle with centre C (1,1) and tangent at point P (5, -2)

Eisimpleir

Obraich a-mach an tansaint ris a' chearcall \({x^2} + {y^2} - 2x - 2y - 23 = 0\) aig a' phuing \(P(5, - 2)\) a tha na laighe air a' chearcall.

'S e meadhan a' chearcaill \((1,1)\)

\({m_{CP}} = \frac{{ - 2 - 1}}{{5 - 1}} = - \frac{3}{4}\)

Mar sin tha \({m_{tgt}} = \frac{4}{3}\) bhon a tha \({m_{CP}} \times {m_{tgt}} = - 1\)

Mar sin 's e co-aontar an tansaint aig P:

\(y - ( - 2) = \frac{4}{3}(x - 5)\)

\(3(y + 2) = 4(x - 5)\)

\(3y - 4x + 26 = 0\)

\(4x - 3y - 26 = 0\)

Question

Obraich a-mach co-aontar an tansaint ris a' chearcall \({x^2} + {y^2} - 2x - 2y - 23 = 0\) aig a' phuing \((5,4)\)

Question

Obraich a-mach co-aontar an tansaint ris a' chearcall \({x^2} + {y^2} - 2x + 5y = 0\) aig a' phuing \((2,0)\)