Co-aontaran triantanachdCo-aontaran triantanachd

Fuasglaidh tu co-aontaran triantanachd an ceuman no ann an radianan a' cleachdadh CUST is am peiriad gus fuasglaidhean eile san rainse a lorg: ceàrnan dà-fhillte, ioma-fhillte is fuincsean nan tonn.

Part ofMatamataigDàimhean agus calculus

Co-aontaran triantanachd

Eisimpleir 1

Fuasgail \({\tan ^2}x = 3\), far a bheil \(0 \le x \le 360\).

Fuasgladh

\({\tan ^2}x = 3\)

\(\tan x = \pm \sqrt 3\)

Bhon as e tan a tha seo, agus gum faod e a bhith dearbhte no àicheil, tha e a' ciallachadh gu bheil sinn sna ceithir cairtealan.

A' chiad chairteal

\(\tan x = \sqrt 3\)

\(x = {\tan ^{ - 1}}(\sqrt 3 )\)

\(x = 60^\circ\)

An dara cairteal

\(x = 180^\circ - 60^\circ\)

\(x = 120^\circ\)

An treas cairteal

\(x = 180^\circ + 60^\circ\)

\(x = 240^\circ\)

An ceathramh cairteal

\(x = 360^\circ - 60^\circ\)

\(x = 300^\circ\)

Mar sin \(x^\circ = 60^\circ ,\,120^\circ ,\,240^\circ ,\,300^\circ\)

Eisimpleir 2

Fuasgail \(8{\sin ^2}x^\circ + 2\sin x^\circ - 3 = 0\), far a bheil \(0 \le x \le 360\).

Fuasgladh

Feumaidh sinn an toiseach an co-aontar ceàrnanach fhactaradh. Gus seo a dhèanamh nas fhasa, atharraich 'sin' gu 's'.

\(8{s^2} + 2s - 3 = 0\)

\((4s + 3)(2s - 1) = 0\)

\(4s + 3 = 0\)

\(s = - \frac{3}{4}\)

\(\sin x = - \frac{3}{4}\)

Bhon a tha sine àicheil, tha sinn anns an treas agus sa cheathramh cairteal.

\(x = {\sin ^{ - 1}}\left( {\frac{3}{4}} \right)\)

\(x^\circ = 48.6^\circ\) (gu 1 id.)

An treas cairteal

\(x = 180^\circ + 48.6^\circ\)

\(x = 228.6^\circ\)

An ceathramh cairteal

\(x = 360^\circ - 48.6^\circ\)

\(x = 311.4^\circ\)

\(2s - 1 = 0\)

\(s = \frac{1}{2}\)

\(\sin x = \frac{1}{2}\)

Bhon a tha sine dearbhte, tha sinn sa chiad agus san dara cairteal.

\(x = {\sin ^{ - 1}}\left( {\frac{1}{2}} \right)\)

\(x = 30^\circ\)

An dara cairteal

\(x = 180^\circ - 30^\circ\)

\(x = 150^\circ\)

Mar sin \(x = 30^\circ ,\,150^\circ ,\,228.6^\circ ,\,311.4^\circ\)