Co-aontaran triantanachdCo-aontaran bunaiteach triantanachd

Fuasglaidh tu co-aontaran triantanachd an ceuman no ann an radianan a' cleachdadh CUST is am peiriad gus fuasglaidhean eile san rainse a lorg: ceàrnan dà-fhillte, ioma-fhillte is fuincsean nan tonn.

Part ofMatamataigDàimhean agus calculus

Co-aontaran bunaiteach triantanachd

Eisimpleir

Fuasgail an co-aontar \(4\sin x^\circ - 3 = 0\), far a bheil \(0 \le x \textless 360\).

Fuasgladh

An toiseach ath-rèitich an co-aontar.

\(4\sin x^\circ - 3 = 0\)

\(4\sin x^\circ = 0 + 3\)

\(4\sin x^\circ = 3\)

\(\sin x^\circ = \frac{3}{4}\)

Seo an coltas a bhios air a' ghraf aig an fhuinsean seo:

Sine graph with two solutions when y=0.75

Bhon ghraf aig an fhuincsean, bhiomaid an dùil ri 2 fhuasgladh: 1 fhuasgladh eadar \(0^\circ\) agus \(90^\circ\) agus am fuasgladh eile eadar \(90^\circ\) agus \(180^\circ\).

\(\sin x^\circ = \frac{3}{4}\)

Bhon as e sine a tha seo, agus dearbhte, tha e a' ciallachadh gum bi sinn anns an dà chairteal far a bheil am fuincsean sine dearbhte – a' chiad agus an dara cairteal.

A' chiad chairteal

\(\sin x^\circ = \frac{3}{4}\)

\(x^\circ = {\sin ^{ - 1}}\left( {\frac{3}{4}} \right)\)

\(x^\circ = 48.59037...\)

\(x^\circ = 48.6^\circ\) (gu 1 id.)

An dara cairteal

\(x^\circ = 180^\circ - 48.6^\circ\)

\(x^\circ = 131.4^\circ\)

Mar sin \(x^\circ = 48.6^\circ ,\,131.4^\circ\)