Co-aontaran bunaiteach triantanachd
Eisimpleir
Fuasgail an co-aontar \(4\sin x^\circ - 3 = 0\), far a bheil \(0 \le x \textless 360\).
Fuasgladh
An toiseach ath-rèitich an co-aontar.
\(4\sin x^\circ - 3 = 0\)
\(4\sin x^\circ = 0 + 3\)
\(4\sin x^\circ = 3\)
\(\sin x^\circ = \frac{3}{4}\)
Seo an coltas a bhios air a' ghraf aig an fhuinsean seo:
Bhon ghraf aig an fhuincsean, bhiomaid an dùil ri 2 fhuasgladh: 1 fhuasgladh eadar \(0^\circ\) agus \(90^\circ\) agus am fuasgladh eile eadar \(90^\circ\) agus \(180^\circ\).
\(\sin x^\circ = \frac{3}{4}\)
Bhon as e sine a tha seo, agus dearbhte, tha e a' ciallachadh gum bi sinn anns an dà chairteal far a bheil am fuincsean sine dearbhte – a' chiad agus an dara cairteal.
A' chiad chairteal
\(\sin x^\circ = \frac{3}{4}\)
\(x^\circ = {\sin ^{ - 1}}\left( {\frac{3}{4}} \right)\)
\(x^\circ = 48.59037...\)
\(x^\circ = 48.6^\circ\) (gu 1 id.)
An dara cairteal
\(x^\circ = 180^\circ - 48.6^\circ\)
\(x^\circ = 131.4^\circ\)
Mar sin \(x^\circ = 48.6^\circ ,\,131.4^\circ\)