IontagrachadhIontagralan cinnteach

'S e iontagrachadh an inbhears aig diofarachadh abairtean ailseabrach is triantanachd co-cheangailte ri camagan is cumhachdan cleachd e gus co-aontaran diofarachail is iontagralan dearbhte fhuasgladh.

Part ofMatamataigDàimhean agus calculus

Iontagralan cinnteach

Ann an iontagralan cinnteach, tha crìochan (as motha agus as lugha) aig na h-iontagralan agus 's urrainn dhuinn an obrachadh a-mach gus freagairt cinnteach fhaighinn.

'S dòcha gum faigh thu ceist mar seo:

\(\int\limits_a^b {a{x^n}\,\,dx} = \left[ {\frac{{a{x^{n + 1}}}}{{n + 1}}} \right]_a^b\)

Eisimpleir

\(\int\limits_1^2 {{x^4}\,\,dx}\)

Fuasgladh

\(\int\limits_1^2 {{x^4}\,\,dx}\)

\(= \left[ {\frac{{{x^5}}}{5}} \right]_1^2\)

Ionadaich na crìochan agus thoir-air-falbh.

\(= \left( {\frac{{{2^5}}}{5}} \right) - \left( {\frac{{{1^5}}}{5}} \right)\)

\(= \frac{{31}}{5}\)

Eisimpleir 2 (leudachadh)

\(\int\limits_1^{\sqrt 3 }x\,\,dx\)

Fuasgladh

\(\int\limits_1^{\sqrt 3 }x\,\,dx\)

\(= \left[ {\frac{{{x^2}}}{2}} \right]_1^{\sqrt 3 }\)

\(= \left( {\frac{{{{(\sqrt 3 )}^2}}}{2}} \right) - \left( {\frac{{{1^2}}}{2}} \right)\)

\(= \frac{3}{2} - \frac{1}{2}\)

\(= 1\)

Eisimpleir 3 (leudachadh)

\(\int\limits_0^{\frac{\pi }{2}} {\sin (3x + \frac{\pi }{4})}\,\, dx\)

Fuasgladh

\(\int\limits_0^{\frac{\pi }{2}} {\sin (3x + \frac{\pi }{4})}\,\, dx\)

\(= \left[ {\frac{{ - 1}}{3}\cos (3x + \frac{\pi }{4})} \right]_0^{\frac{\pi }{2}}\)

\(= \left( {\frac{{ - 1}}{3}\cos \left( {3\left( {\frac{\pi }{2}} \right) + \frac{\pi }{4}} \right)} \right) - \left( {\frac{{ - 1}}{3}\cos \left( {3(0) + \frac{\pi }{4}} \right)} \right)\)

\(= \left( {\frac{{ - 1}}{3}\cos \left( {\frac{{7\pi }}{4}} \right)} \right) - \left( {\frac{{ - 1}}{3}\cos \left( {\frac{\pi }{4}} \right)} \right)\)

\(= - \frac{{\sqrt 2 }}{6} - \left( { - \frac{{\sqrt 2 }}{6}} \right)\)

\(= 0\)