Abairtean triantanachdTuilleadh eisimpleirean dhen fhoirmle cur-ris

Cleachd foirmlean cur-ris/co-ionannachdan triantanachd gus abairtean triantanachd a shìmpleachadh/obrachadh a-mach. Fuasgail co-aontaran triantanachd le foirmle ceàrn dà-fhillte is fuincsean nan tonn.

Part ofMatamataigAbairtean agus fuincseanan

Tuilleadh eisimpleirean dhen fhoirmle cur-ris

Seo eisimpleir airson coimhead air. An turas seo feumaidh tu dà thriantan cheart-cheàrnach a tharraing gus do chuideachadh leis an obrachadh.

Question

Ma tha \(\sin p = \frac{3}{5}\) agus \(\tan q = \frac{5}{{12}}\) far a bheil \(0 \le p \le \frac{\pi }{2}\) agus \(0 \le q \le \frac{\pi }{2}\), obraich a-mach an luach mionaideach aig \(\sin (p - q)\)

Faodaidh tu na foirmlean a chleachdadh gus abairtean mar \(\cos \left( {\frac{\pi }{2} - 3x} \right)\) a mheudachadh agus a shìmpleachadh.

\(\cos \left( {\frac{\pi }{2} - 3x} \right) = \cos \frac{\pi }{2}\cos 3x + \sin \frac{\pi }{2}\sin 3x\)

\(= 0 \times \cos 3x + 1 \times \sin 3x\)

\(= \sin 3x\)

Gus d' eòlas a chur am meud, cleachd na foirmlean gus cuid de na foirmlean coitcheann as aithne dhut mar-thà a dhearbhadh.

Feuch iad seo:

\(\sin x^\circ = \cos (90 - x)^\circ\)

\(\sin x = \sin (\pi - x)\)

\(\cos x^\circ = - \cos (180 + x)^\circ\)

\(\cos x = \cos (2\pi - x)\)

\(\cos x = \cos ( - x)\)(Taic): \(\cos x = \cos (0 - ( - x))\)

\(\sin ( - x) = - \sin x\)(Taic): \(\sin ( - x) = \sin (0 - x)\)