Bheactoran geoimeatrachBheactoran ùra bho chur-ris (toradh)

Bidh bheactoran a' toirt cunntas air gluasad a thaobh cùrsa is meudachd. Faodar an cur-ris no an toirt-air-falbh gus bheactoran ùra a dhèanamh. Lorg an ceàrn eadar bheactoran leis an toradh scalair.

Part ofMatamataigAbairtean agus fuincseanan

Bheactoran ùra bho chur-ris (toradh)

Ma bhios tu a' cur-ris dà bheactor, no barrachd, bidh bheactor ùr agad mar thoradh air an cur còmhla.

Triangle made up of vectors XY, YZ and XZ

Gus siubhal bho X gu Z, faodaidh tu gluasad a-null bheactor \(\overrightarrow {XY}\) agus an uair sin air \(\overrightarrow {YZ}\). Dh'fhaodadh tu cuideachd gluasad gu dìreach a-null \(\overrightarrow {XZ}\).

Mar sin canaidh sinn gur e \(\overrightarrow {XZ}\) an toradh aig \(\overrightarrow {XY}\) agus \(\overrightarrow {YZ}\) .

Question

Shape made up of vectors a, b, c, d, e, f and g

Sgrìobh iad seo mar bheactoran singilte:

1. \(f + g\)

2. \(a + b\)

3. \(e - b - a\)

Question

Triangle ABC with internal triangle XYZ and vectors AX=a, XZ=b, AZ=c

Tha na triantain ABC agus XYZ ionann-thaobhach.

'S e X a' phuing-meadhain aig AB, 's e Y a' phuing-meadhain aig BC, 's e Z a' phuing-meadhain aig AC.

\(\overrightarrow {AX} = a\), \(\overrightarrow {XZ} = b\), \(\overrightarrow {AZ} = c\)

Sgrìobh iad seo ann an teirmean de a, b agus c.

  1. \(\overrightarrow {XY}\)
  2. \(\overrightarrow {YZ}\)
  3. \(\overrightarrow {XC}\)
  4. \(\overrightarrow {BZ}\)
  5. \(\overrightarrow {AC}\)