DiofarachadhA' sgeidseadh lùb

Gabhaidh diofarachadh ann an abairtean ailseabrach is/no triantanachd a chleachdadh gus reatan atharrachaidh, puingean suidhichte is an nàdar obrachadh a-mach, no caisead no co-aontar tansaint don lùb

Part ofMatamataigDàimhean agus calculus

A' sgeidseadh lùb

Gus lùb fuincsean a sgeidseadh, feumaidh tu:

  • Am fuincsean a dhiofarachadh
  • Suidhich \(\frac{{dy}}{{dx}} = 0\)
  • agus an uair sin fuasgail gus an obraich thu a-mach na co-chomharran-\(x\) aig na puingean suidhichte
  • Obraich a-mach nàdar na lùib a' cleachdadh nan co-chomharran-\(x\) ann an clàr nàdair gus cumadh na lùib a dhearbhadh air taobh clì agus deas nam puingean suidhichte
  • Ionadaich a-steach na co-chomharran-\(x\) aig puingean suidhichte dhan cho-aontar thùsail aig an lùib agus obraich a-mach na co-chomharran-\(y\) aig na puingean sin
  • Obraich a-mach càit a bheil an lùb a' gearradh a' \(y\)-axis le bhith ag ionadachadh \(x = 0\) a-steach do cho-aontar tùsail na lùib
  • Obraich a-mach càit a bheil an lùb a' gearradh an \(x\)-axis le bhith ag ionadachadh \(y = 0\) a-steach do cho-aontar tùsail na lùib
  • Sgeids an lùb

Eisimpleir

Sgeids an lùb \(y = {x^2} + 4x - 5\)

Fuasgladh

\(\frac{{dy}}{{dx}} = 2x + 4\)

Bidh puingean suidhichte ann nuair a tha \(\frac{{dy}}{{dx}} = 0\)

\(2x + 4 = 0\)

\(2(x + 2) = 0\)

\(x + 2 = 0\)

\(x = - 2\)

\(\frac{{dy}}{{dx}} = 2( - 3) + 4 = - 6 + 4 = - 2\) (àicheil)

\(\frac{{dy}}{{dx}} = 2( - 2) + 4 = - 4 + 4 = 0\) (suidhichte)

\(\frac{{dy}}{{dx}} = 2( - 1) + 4 = - 2 + 4 = 2\) (dearbhte)

Table displaying the minimum turning point of a curve

Co-chomharran-y

Nuair a tha \(x = - 2\)

\(y = {x^2} + 4x - 5\)

\(y = {( - 2)^2} + 4( - 2) - 5\)

\(= 4 - 8 - 5 = - 9\)

Mar sin tha a' phuing-tionndaidh as lugha aig \(( - 2, - 9)\)

A' gearradh a' y-axis nuair a tha \(x = 0\)

\(y = {x^2} + 4x - 5\)

\(y = {0^2} + 4(0) - 5 = - 5\)

Mar sin a' gearradh a' \(y\)-axis aig \((0, - 5)\)

A' gearradh an \(x\)-axis nuair a tha \(y = 0\)

\(y = {x^2} + 4x - 5\)

\({x^2} + 4x - 5 = 0\)

\((x + 5)(x - 1) = 0\)

\(x + 5 = 0\)

\(x = - 5\)

no

\(x - 1 = 0\)

\(x = 1\)

Mar sin a' gearradh an \(x\)-axis aig \((-5, 0)\) agus \((1, 0)\)

A rough sketch of a parabola, touching points (-5,0), (-2,-9), (0,-5) and (1,0)

Question

Sgeids an lùb \(y = {x^3} + 3{x^2}\)