Gabhaidh cuid de shurdan a shìmpleachadh a' cleachdadh diofar riaghailtean no le bhith a' raiseanaileadh an t-seòrsaiche. Gabhaidh cuid de theirmean le indeacsan cuideachd a bhith air an sìmpleachadh.
Part ofMatamataigSgilean àireamhach
Tha an riaghailt air a leudachadh gu:
\(a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}\)
Sìmplich \(16^{\frac{3}{2}}\)
\(=(\sqrt{16})^{3}\)
\(=4^{3}\)
\(=64\)
Sìmplich \(32^{\frac{3}{5}}\)
=\((\sqrt[5]{32})^{3}\)
\(= 2^{3}\)
\(=8\)
Sìmplich \(8^{\frac{-2}{3}}\)
\(=(\sqrt[3]{8})^{-2}\)
\(=2^{-2}\)
=\(\frac{1}{2^{2}}\)
\(=\frac{1}{4}\)
Sìmplich \(y^{\frac{-3}{4}}\times y^{\frac{1}{4}}\)
Cuir-ris na h-indeacsan \(\frac{-3}{4}+\frac{1}{4}=\frac{-2}{4}\) a shìmplicheas gu \(\frac{-1}{2}\)
\(= y^{\frac{-1}{2}}\)
Feuch a-nis na ceistean gu h-ìosal.
Sìmplich \(49^{\frac{3}{2}}\)
\(= (\sqrt{49})^{3}\)
\(=7^{3}\)
\(=343\)
Sìmplich \(27^{\frac{-2}{3}}\)
\(=(\sqrt[3]{27})^{-2}\)
\(=3^{-2}\)
\(=\frac{1}{3^{2}}\)
\(= \frac{1}{9}\)
Sìmplich \(y^{\frac{-2}{3}}\times y^{\frac{7}{3}}\)
Cuir-ris na h-indeacsan \(\frac{-2}{3}+\frac{7}{3}=\frac{5}{3}\)
\(= y^{\frac{5}{3}}\)