Ailseabra
A' tarraing ghrafan
Gus graf loidhne-dhìreach a tharraing:
- dèan clàr
- sgrìobh co-chomharran nam puingean air an loidhne
- cleachd axes fhreagarrach agus càirich na puingean air an loidhne.
Eisimpleir
1. Tarraing an graf aig \(y = 2x + 1\)
| \(x\) | -2 | -1 | 0 | 1 | 2 |
| obrachadh | \(2 \times ( - 2) + 1\) | \(2 \times ( - 1) + 1\) | \(2 \times ( 0) + 1\) | \(2 \times ( 1) + 1\) | \(2 \times ( 2) + 1\) |
| \(y\) | -3 | -1 | 1 | 3 | 5 |
| \(x\) |
|---|
| -2 |
| -1 |
| 0 |
| 1 |
| 2 |
| obrachadh |
|---|
| \(2 \times ( - 2) + 1\) |
| \(2 \times ( - 1) + 1\) |
| \(2 \times ( 0) + 1\) |
| \(2 \times ( 1) + 1\) |
| \(2 \times ( 2) + 1\) |
| \(y\) |
|---|
| -3 |
| -1 |
| 1 |
| 3 |
| 5 |
2. Na co-chomharran: (-2, -3), (-1, -1), (0, 1), (1, 3) agus (2, 5)
3.
Question
Tarraing an loidhne dhìreach le co-aontar \(y = 3x - 2\)
| \(x\) | -2 | -1 | 0 | 1 | 2 |
| obrachadh | \(3 \times ( - 2) - 2\) | \(3 \times ( - 1) - 2\) | \(3 \times ( 0) - 2\) | \(3 \times ( 1) - 2\) | \(3 \times ( 2) - 2\) |
| \(y\) | -8 | -5 | -2 | 1 | 4 |
| \(x\) |
|---|
| -2 |
| -1 |
| 0 |
| 1 |
| 2 |
| obrachadh |
|---|
| \(3 \times ( - 2) - 2\) |
| \(3 \times ( - 1) - 2\) |
| \(3 \times ( 0) - 2\) |
| \(3 \times ( 1) - 2\) |
| \(3 \times ( 2) - 2\) |
| \(y\) |
|---|
| -8 |
| -5 |
| -2 |
| 1 |
| 4 |
Na co-chomharran: (-2, -8), (-1, -5), (0, -2), (1, 1) agus (2, 4)
Loidhneachan sònraichte
Tha an aon chaisead aig loidhneachan co-shìnte.
Tha caisead neo-mhìnichte aig loidhneachan bheartagail.
Co-aontar \(x = a\)
Tha caisead de neoni aig loidhneachan còmhnard.
Co-aontar \(y = b\)