Creu siart cylch
Creu siartiau cylch – defnyddio tabl
Mae’r tabl isod yn dangos y marciau a enillwyd gan \({30}\) o ddisgyblion yn eu harholiad diwedd tymor.
I ddangos y wybodaeth hon mewn siart cylch, cymera’r camau canlynol:
- Cyfrifa gyfanswm nifer y disgyblion: \({7} + {11} + {6} + {4} + {2} = {30}\)
- I gyfrifo ongl pob segment, cyfrifa pa ffracsiwn o’r cyfanswm a gafodd bob marc.
- Dechreua gyda marciau A: \(\frac{7}{30}\)
- Mae \({360}^\circ\) mewn cylch llawn, felly i ganfod yr ongl, lluosa’r ffracsiwn â \({360}:\frac{7}{30}\times{360} = {84}^\circ\)
- Mae gan sector marciau A ongl o \({84}^\circ\).
- Dilyna'r un broses i ganfod ongl segmentau’r marciau eraill.
- Unwaith y byddi di wedi cyfrifo onglau’r segmentau, cer ati i greu'r siart cylch.
Question
Copïa a chwblha’r tabl isod, wedyn defnyddia’r data i greu siart cylch.
| Marc | Amlder | Ongl |
| A | \({7}\) | \(\frac{7}{30}\times{360}={84}^\circ\) |
| B | \({11}\) | |
| C | \({6}\) | |
| D | \({4}\) | |
| E | \({2}\) |
| Marc | A |
|---|---|
| Amlder | \({7}\) |
| Ongl | \(\frac{7}{30}\times{360}={84}^\circ\) |
| Marc | B |
|---|---|
| Amlder | \({11}\) |
| Ongl |
| Marc | C |
|---|---|
| Amlder | \({6}\) |
| Ongl |
| Marc | D |
|---|---|
| Amlder | \({4}\) |
| Ongl |
| Marc | E |
|---|---|
| Amlder | \({2}\) |
| Ongl |
| Marc | Amlder | Ongl |
| A | \({7}\) | \(\frac{7}{30}\times{360}= {84}^\circ\) |
| B | \({11}\) | \(\frac{11}{30}\times{360} = {132}^\circ\) |
| C | \({6}\) | \(\frac{6}{30}\times{360} = {72}^\circ\) |
| D | \({4}\) | \(\frac{4}{30}\times{360} = {48}^\circ\) |
| E | \({2}\) | \(\frac{2}{30}\times{360} = {24}^\circ\) |
| Marc | A |
|---|---|
| Amlder | \({7}\) |
| Ongl | \(\frac{7}{30}\times{360}= {84}^\circ\) |
| Marc | B |
|---|---|
| Amlder | \({11}\) |
| Ongl | \(\frac{11}{30}\times{360} = {132}^\circ\) |
| Marc | C |
|---|---|
| Amlder | \({6}\) |
| Ongl | \(\frac{6}{30}\times{360} = {72}^\circ\) |
| Marc | D |
|---|---|
| Amlder | \({4}\) |
| Ongl | \(\frac{4}{30}\times{360} = {48}^\circ\) |
| Marc | E |
|---|---|
| Amlder | \({2}\) |
| Ongl | \(\frac{2}{30}\times{360} = {24}^\circ\) |