Module 8 (M8) - Algebra - Indices

Part ofMathsM8: Number & Algebra

Indices

Before reading this guide, it may be useful to look at M7 Indices.

Rules of Indices when working with the same base

RULEALGEBRAIC RULENUMERICAL EXAMPLE
1. When multiplying, ADD the indices\(a^3 \times a^2 = a^5\)\(2^3 \times 2^2 = 2^5 = 32\)
2. When dividing, SUBTRACT the indices\(a^5 ÷ a^2 = a^3\)\(3^5 ÷3^2 = 3^3 = 27\)
3. When the power is raised to another power, MULTIPLY the indices.\((a^3)^2 = a^6\)\((3^3)^2 = 3^6 = 729\)
4. Anything to the power of zero is 1\(a^0 = 1\)\(43^0 = 1\)
5. Negative indices indicate a fraction.\(a^{-n} = \frac{1}{a^n}\)\(3^{-2} = \frac{1}{3^2} = \frac{1}{9}\)

We can add a further rule for fractional indices -

RULEALGEBRAIC RULENUMERICAL EXAMPLE
1. When multiplying, ADD the indices\(a^3 \times a^2 = a^5\)\(2^3 \times 2^2 = 2^5 = 32\)
2. When dividing, SUBTRACT the indices\(a^5 ÷ a^2 = a^3\)\(3^5 ÷3^2 = 3^3 = 27\)
3. When the power is raised to another power, MULTIPLY the indices.\((a^3)^2 = a^6\)\((3^3)^2 = 3^6 = 729\)
4. Anything to the power of zero is 1\(a^0 = 1\)\(43^0 = 1\)
5. Negative indices indicate a fraction.\(a^{-n} = \frac{1}{a^n}\)\(3^{-2} = \frac{1}{3^2} = \frac{1}{9}\)
6. Fractional indices
Numerator indicates a power
Denominator indicates a root
\(a^{\frac{b}{c}}=\sqrt[c]{a^b}\)\(8^{\frac{2}{3}}=(\sqrt[3]{8})^2 = 2^2 = 4\)
Back to top

Evaluating fractional indices

Example

Evaluate \( 25^{\frac{1}{2}}\)

Solution:

\(25^{\frac{1}{2}} = \sqrt{25} = 5\)



Example

Evaluate \(81^{\frac{1}{4}}\times 9^{-1}\)

Solution

\( 81^{\frac{1}{4}} = \sqrt[4]{81} = 3\)

\( 9^{-1} = \frac{1}{9}\)

\(81^{\frac{1}{4}} \times 9^{-1} = 3 \times \frac{1}{9} = \frac{3}{9} = \frac{1}{3}\)

Answer

\(\frac{1}{3}\)


Example

Evaluate \(100^{–\frac{3}{2}}\)

Solution

\(100^{–\frac{3}{2}} = \frac{1}{100^{\frac{3}{2}}} = \frac{1}{\sqrt{(100)}^3} = \frac{1}{1000}\)


Question

Evaluate \(\frac {1}{16^{\frac{3}{4}}}\times 2^{-3}\)

Back to top

Simplifying expressions with fractional indices

Example

Simplify \((a^4)^{–\frac{1}{2}} \times a^{\frac{3}{2}} \)

Solution

\((a^4)^{\mathbf{–\frac{1}{2}}}\times a^{\frac{3}{2}}\)

Use rule 3 – multiply indices to raise a further power

\((a^{\mathbf{4}})^{\mathbf {–\frac{1}{2}}}\times a^{\frac{3}{2}} = a^{\mathbf{-2}} \times a^{\mathbf{\frac{3}{2}}}\)

Now use rule 1 – add the indices (\(= -2 + \frac{3}{2} = -{\frac{1}{2}}\))

\(= a^{–\frac{1}{2}}\)

Question

Simplify \(t^{–\frac{1}{4}} \times t^0 \times t^\frac{3}{4}\)

Back to top

Solving Equations using Rules for indices

Example

Solve the equation \( 4^{-y} = \sqrt{16^3}\)

Solution

Rewrite Right Hand Side (RHS) in powers of 4

\(\sqrt{16^3} = 4^3\)

Equate Right Hand Side and Left Hand Side (LHS)

\(4^{-y} = 4^3\)

Answer: \(\mathbf {y = -3}\)

Question

Solve the equation \(0.01^y = 1000^{\frac {-1}{3}}\)

Back to top

Test yourself

Back to top