Working out division with remainders

Part ofMathsMultiplying and dividingYear 6

What are remainders?

A girl with a thought bubble containing 4 r2, 4.2 and 4 and 2 tenths.

Sometimes it is not possible to divide one number by another exactly.

Anything left over that cannot be divided exactly is called the remainder.

When you are solving problems and there is a remainder, you need to know what to do with it.

There are different ways of representing the remainder.

They can be represented as just a remainder, a fraction or a decimal.

A girl with a thought bubble containing 4 r2, 4.2 and 4 and 2 tenths.
Back to top

Activity: Working out division with remainders

Complete this interactive activity to understand how to work out the answer to division problems with remainders. Then put your knowledge to the test.

Back to top

Representing the remainder

Let's look at a question.

'If 232 bananas need to be packed into bags of 5, how many bags would be needed?'

Boy thinking about how to divide 232 bananas into bags of 5

The division calculation you need to complete is:

232 ÷ 5 =

If 232 bananas needed to be packed into bags of 5, you would need 46 bags and 2 single bananas would be left over.

You could show this remainder in some different ways.

The simplest way of working with a remainder when dividing numbers is just to leave the remainder.

You write a 'r' next to the number to show that it is the remainder, like this:

Long division showing answer 46 r2

To represent the remainder as a fraction, all you need to do is write the remainder as the numerator, and the divisor as the denominator.

2 is the remainder and 5 is the divisor.

The fraction would be \(\frac {2} {5}\).

long division showing answer to be 46 and two fifths.

Another way of representing the remainder is to use a decimal point and continue the division into the tenths and hundredths columns.

Division continued to show remainder as a decimal 46.4

When solving problems with division, you have to decide which of these ways of representing the remainder is the best.

Which way do you think would be best for the question about the bananas?

Back to top

Example 1

The number 8, next to a ball of string, is in front of the division bracket and 404 is under the bracket.

Lucy has a length of wool measuring 404 centimetres.

She needs to cut it into 8 equal pieces.

How long will each length of wool be?

Back to top

Example 2

The number 8 is in front of the division bracket and 38 is under the bracket.

If you worked out 38 ÷ 8, how would you represent the remainder in both decimals and with a fraction?

Back to top

Example 3

The number 30 is in front of the division bracket and 800 is under the bracket.

Calculate 800 ÷ 30. What happens?

Back to top

Play our fun maths game Guardians: Defenders of Mathematica. game

Use your times tables and more maths skills to defeat monsters and reclaim the Kingdom of Mathematica

Play our fun maths game Guardians: Defenders of Mathematica
Back to top

More on Multiplying and dividing

Find out more by working through a topic