Solving trigonometric equationsUsing the double angle formulae

Trigonometric equations can be solved in degrees or radians using CAST and its period to find other solutions within the range, including multiple or compound angles and the wave function.

Part ofMathsAlgebraic and trigonometric skills

Trigonometric Equations using the double angle formulae

You can revise your knowledge of double angle formulae as part of Expressions and Functions.

Example

Solve the equation \(5\sin 2x^\circ + 7\cos x^\circ = 0\), for \(0^\circ \le x^\circ \le 360^\circ\).

Solution

\(5\sin 2x^\circ + 7\cos x^\circ = 0\)

Replace \(\sin 2x^\circ\) with \(2\sin x^\circ \cos x^\circ\)

\(5(2\sin x^\circ \cos x^\circ ) + 7\cos x^\circ = 0\)

Multiply out the brackets:

\(10\sin x^\circ \cos x^\circ + 7\cos x^\circ = 0\)

Take out \(\cos x^\circ\) as the common factor.

\(\cos x^\circ (10\sin x^\circ + 7) = 0\)

Two possible solutions are:

\(\cos x^\circ = 0\)

\(10\sin x^\circ + 7 = 0\)

Solve each equation in turn:

\(\cos x^\circ = 0\)

\(x^\circ = 90^\circ\) or \(270^\circ\)

And:

\(10\sin x^\circ + 7 = 0\)

\(10\sin x^\circ = - 7\)

\(\sin x^\circ = - \frac{7}{{10}}\)

\(x^\circ = 224.4^\circ\) or \(315.6^\circ\)

Which gives solutions of \(90^\circ ,\,224.4^\circ ,\,270^\circ ,\,315.6^\circ\)