IntegrationDefinite Integrals

Integration is the inverse of differentiation of algebraic and trigonometric expressions involving brackets and powers. This can solve differential equations and evaluate definite integrals.

Part ofMathsCalculus skills

Definite Integrals

Watch this video to learn about evaluating definite integrals.

Definite integrals are integrals which have limits (upper and lower) and can be evaluated to give a definite answer.

A question of this type may look like:

\(\int\limits_a^b {a{x^n}\,\,dx} = \left[ {\frac{{a{x^{n + 1}}}}{{n + 1}}} \right]_a^b\)

Example

\(\int\limits_1^2 {{x^4}\,\,dx}\)

Solution

\(\int\limits_1^2 {{x^4}\,\,dx}\)

\(= \left[ {\frac{{{x^5}}}{5}} \right]_1^2\)

Substitute the limits in and subtract.

\(= \left( {\frac{{{2^5}}}{5}} \right) - \left( {\frac{{{1^5}}}{5}} \right)\)

\(= \frac{{31}}{5}\)

Example 2 (extension)

\(\int\limits_1^{\sqrt 3 }x\,\,dx\)

Solution

\(\int\limits_1^{\sqrt 3 }x\,\,dx\)

\(= \left[ {\frac{{{x^2}}}{2}} \right]_1^{\sqrt 3 }\)

\(= \left( {\frac{{{{(\sqrt 3 )}^2}}}{2}} \right) - \left( {\frac{{{1^2}}}{2}} \right)\)

\(= \frac{3}{2} - \frac{1}{2}\)

\(= 1\)

Example 3 (extension)

\(\int\limits_0^{\frac{\pi }{2}} {\sin (3x + \frac{\pi }{4})}\,\, dx\)

Solution

\(\int\limits_0^{\frac{\pi }{2}} {\sin (3x + \frac{\pi }{4})}\,\, dx\)

\(= \left[ {\frac{{ - 1}}{3}\cos (3x + \frac{\pi }{4})} \right]_0^{\frac{\pi }{2}}\)

\(= \left( {\frac{{ - 1}}{3}\cos \left( {3\left( {\frac{\pi }{2}} \right) + \frac{\pi }{4}} \right)} \right) - \left( {\frac{{ - 1}}{3}\cos \left( {3(0) + \frac{\pi }{4}} \right)} \right)\)

\(= \left( {\frac{{ - 1}}{3}\cos \left( {\frac{{7\pi }}{4}} \right)} \right) - \left( {\frac{{ - 1}}{3}\cos \left( {\frac{\pi }{4}} \right)} \right)\)

\(= - \frac{{\sqrt 2 }}{6} - \left( { - \frac{{\sqrt 2 }}{6}} \right)\)

\(= 0\)