EuropeSouth AsiaAsia PacificAmericasMiddle EastAfricaBBC HomepageWorld ServiceEducation
News image
News image
News image
News imageNews image
News image
Front Page
News image
World
News image
UK
News image
UK Politics
News image
Business
News image
Sci/Tech
News image
Health
News image
Education
News image
Sport
News image
Entertainment
News image
Talking Point
News image
In Depth
News image
On Air
News image
Archive
News image
News image
News image
Feedback
Low Graphics
Help
News imageNews imageNews image
Tuesday, November 2, 1999 Published at 16:40 GMT
News image
News image
Sci/Tech
News image
Researchers map malaria parasite
News image

News image
Scientists have taken a major step forward in understanding the biology of the parasite that causes the most dangerous form of malaria.

A team of researchers at the University of Wisconsin-Madison and New York University has produced the first, large-scale map of the parasite's genetic material.

Scientists still have to identify the individual genes in the parasite's DNA and the proteins they produce, but the map should greatly speed up the international project to reveal the genetic secrets behind malaria. The ultimate goal is to develop novel ways of combating a disease that has shown a frustrating ability to become resistant to current drugs.

Malaria is a public health problem in some 90 countries, and causes between 1.5 and 2.7 million deaths globally each year. Ninety per cent of all malaria cases are in sub-Saharan Africa where it is the main cause of death and a major threat to child health. Worldwide, a child dies of malaria every 30 seconds.

The most dangerous form of malaria is caused by the single-celled parasite Plasmodium falciparum, which is spread from infected to healthy people through mosquitoes. Decoding the parasite's DNA and identifying all its genes is the goal of the international Malaria Genome Consortium.

The genome of P. falciparum consists of 14 chromosomes. Each of these is made up of a very long stretch of DNA, the molecule that carries the genetic code.

Shotgun technique

Scientists hunt for genes by chopping up the DNA into smaller, overlapping segments. In conventional genome mapping, these fragments are separated in gels, the genetic code deciphered, with the whole jigsaw eventually pieced back together to give a complete picture.

But the Wisconsin-New York team has used a new mapping technique, often referred to as "optical mapping" or the "shotgun" method.

In this, the DNA is "pinned down" on plates and cut up in situ. A laser technique and special software is used to pick out important markers and measure the size of the fragments.

Optical mapping can be done in a fraction of the time it takes conventional methods. It is an automated process that creates a single, complete snapshot of a genome with very small amounts of material.

Assembling the final jigsaw puzzle, knowing where all the genes are supposed to sit on the chromosomes, is one of the most difficult steps of any sequencing project, but it is made much easier if a map of the genome is available.

Writing in the journal Nature Genetics, the researchers say their approach could also accelerate other sequencing efforts, including the human genome project.

News image


Advanced options | Search tips


News image
News image
News imageBack to top | BBC News Home | BBC Homepage |
News image

News imageNews imageNews image
Sci/Tech Contents
News image
News imageNews image
Relevant Stories
News image
13 Oct 99�|�Africa
Malaria protection for every African child
News image
02 Nov 99�|�Sci/Tech
Ugandan rice production brings malaria
News image
02 Sep 99�|�Health
Drug to combat growing malaria menace
News image
26 Jul 99�|�Health
Race for malaria money
News image
17 Jun 99�|�Medical notes
Infectious disease: A guide
News image
04 Jun 99�|�Health
Doctors urge two-pronged attack on malaria
News image

News image
News image
News image
News imageInternet Links
News image
News imageNews image
Malaria Foundation International
News image
World Health Organization
News image
Malaria
News image
Plasmodium falciparum Genome Project
News image
Nature Genetics
News image
News imageNews image
The BBC is not responsible for the content of external internet sites.

News image
News image
News image
News imageIn this section
News image
World's smallest transistor
News image
Scientists join forces to study Arctic ozone
News image
Mathematicians crack big puzzle
News image
From Business
The growing threat of internet fraud
News image
Who watches the pilots?
News image
From Health
Cold 'cure' comes one step closer
News image

News image
News image
News image